class: sf-title-slide <a href="https://github.com/rstudio-conf-2020/dl-keras-tf"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://s3.amazonaws.com/github/ribbons/forkme_right_darkblue_121621.png" alt="Fork me on GitHub"></a> <br><br><br><br><br><br><br> # .font250.white[Deep Learning with
<i class="fab fa-r-project faa-pulse animated faa-slow " style=" color:steelblue;"></i>
] ## .font120.white[Using Keras with Tensorflow backend] .white[Brad Boehmke] .white[rstudio::conf(2020)] .white[rstd.io/conf20-dl] --- # Workshop policies .pull-left[ <img src="images/sf.png" width="2324" style="display: block; margin: auto;" /> ] .pull-right.font90[ * Identify the exits closest to you in case of emergency * Please review the rstudio::conf code of conduct that applies to all workshops. Issues can be addressed three ways: - In person: contact any rstudio::conf staff member or the conference registration desk - By email: send a message to conf@rstudio.com - By phone: call 844-448-1212 * Please do not photograph people wearing red lanyards * A chill-out room is available for neurologically diverse attendees on the 4th floor of tower 1 ] --- # About me <img src="images/about_me_bitmoji.png" height="60" width="60", align="right"> <br> .pull-left[ <img src="images/name-tag.png" width="1360" style="display: block; margin: auto;" /> ] -- .pull-right[ <img src="https://images-na.ssl-images-amazon.com/images/I/41ttvv4UJ%2BL._SX331_BO1,204,203,200_.jpghttps://images.tandf.co.uk/common/jackets/amazon/978113849/9781138495685.jpg" height="400" style="display: block; margin: auto;" /> ] --- # About me <img src="images/about_me_bitmoji.png" height="60" width="60", align="right"> <br> .pull-left[ <img src="images/name-tag.png" width="1360" style="display: block; margin: auto;" /> ] .pull-right[ <img src="https://images.tandf.co.uk/common/jackets/amazon/978113849/9781138495685.jpg" height="400" style="display: block; margin: auto;" /> ] --- # About me <img src="images/about_me_bitmoji.png" height="60" width="60", align="right"> <br> .pull-left[ <img src="images/name-tag.png" width="1360" style="display: block; margin: auto;" /> ] .pull-right[ <br><br> <img src="images/r-contributions.png" width="895" style="display: block; margin: auto;" /> ] --- # About me <img src="images/about_me_bitmoji.png" height="60" width="60", align="right"> <br> .pull-left[ <img src="images/name-tag.png" width="1360" style="display: block; margin: auto;" /> ] .pull-right[ <br><br> <img src="images/8451_logo.jpeg" width="533" style="display: block; margin: auto;" /> ] --- # About me <img src="images/about_me_bitmoji.png" height="60" width="60", align="right"> <br> .pull-left[ <img src="images/name-tag.png" width="1360" style="display: block; margin: auto;" /> ] .font120.pull-right[ <br><br> [<svg style="height:0.8em;top:.04em;position:relative;fill:steelblue;" viewBox="0 0 496 512"><path d="M336.5 160C322 70.7 287.8 8 248 8s-74 62.7-88.5 152h177zM152 256c0 22.2 1.2 43.5 3.3 64h185.3c2.1-20.5 3.3-41.8 3.3-64s-1.2-43.5-3.3-64H155.3c-2.1 20.5-3.3 41.8-3.3 64zm324.7-96c-28.6-67.9-86.5-120.4-158-141.6 24.4 33.8 41.2 84.7 50 141.6h108zM177.2 18.4C105.8 39.6 47.8 92.1 19.3 160h108c8.7-56.9 25.5-107.8 49.9-141.6zM487.4 192H372.7c2.1 21 3.3 42.5 3.3 64s-1.2 43-3.3 64h114.6c5.5-20.5 8.6-41.8 8.6-64s-3.1-43.5-8.5-64zM120 256c0-21.5 1.2-43 3.3-64H8.6C3.2 212.5 0 233.8 0 256s3.2 43.5 8.6 64h114.6c-2-21-3.2-42.5-3.2-64zm39.5 96c14.5 89.3 48.7 152 88.5 152s74-62.7 88.5-152h-177zm159.3 141.6c71.4-21.2 129.4-73.7 158-141.6h-108c-8.8 56.9-25.6 107.8-50 141.6zM19.3 352c28.6 67.9 86.5 120.4 158 141.6-24.4-33.8-41.2-84.7-50-141.6h-108z"/></svg>](http://bradleyboehmke.github.io/) bradleyboehmke.github.io <br> [<svg style="height:0.8em;top:.04em;position:relative;fill:steelblue;" viewBox="0 0 496 512"><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>](https://github.com/bradleyboehmke/) @bradleyboehmke <br> [<svg style="height:0.8em;top:.04em;position:relative;fill:steelblue;" viewBox="0 0 512 512"><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>](https://twitter.com/bradleyboehmke) @bradleyboehmke <br> [<svg style="height:0.8em;top:.04em;position:relative;fill:steelblue;" viewBox="0 0 512 512"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>](mailto:bradleyboehmke@gmail.com) bradleyboehmke@gmail.com ] --- class: inverse, center, middle # What are we going to cover? --- # Modeling purposes .font130[ .pull-left[ * Regression * Classification * Computer vision * Recommendation systems * Natural language processing ] ] --- # Model architectures .font130[ .pull-left.opacity20[ * Regression * Classification * Computer vision * Recommendation systems * Natural language processing ] .pull-right[ * Multilayer perceptron (MLP) * Convolutional neural networks (CNNs) * Transfer learning * Recurrent neural networks (RNNs) * Long-short term memory neural networks (LSTMs) ] ] --- # Model gears .font130[ .pull-left[ * Tensors * Sequential vs functional models * Activation functions * Derivatives & gradient descent * Backward propagation * Batches & epochs ] .pull-right[ * Learning rate * Convolutions * Embeddings * Recurrent connections * and more! ] ] --- # Workflow procedures .font130[ .pull-left[ * Data preprocessing * Data augmentation * Network architecture * Model compiling * Regularization * Hyperparameter tuning ] .pull-right[ * Callbacks procedures * Model validation * Transfer learning * Model interpretation * and more! ] ] --- class: inverse # My objective is to... <br><br> .font130.white[ * Provide an intuitive understanding of the engines and architectures that drive deep learning.<br><br> * Apply a variety of deep learning algorithms.<br><br> * Establish a mental model of deep learning. ] --- #
<i class="fas fa-exclamation-circle faa-FALSE animated " style=" color:red;"></i>
I assume you are... <br> .font130[New to the field of deep learning and neural networks but eager to learn.]<br><br> -- .font130[An experienced R user comfortable with both tidyverse & non-tidyverse code, creating functions, and applying control (i.e. if, ifelse) and iteration (i.e. for, while) statements.]<br><br> -- .font130[Familiar with machine learning concepts such as data splitting, feature engineering, resampling procedures (i.e. k-fold cross validation), hyperparameter tuning, and model validation.] --- class: inverse, center, middle # How are we going to learn? --- # Hands-on notebooks .pull-left[ .center[Active learning] <img src="images/notebook-preview.gif" style="display: block; margin: auto;" /> ] -- .pull-right[ https://github.com/rstudio-conf-2020/dl-keras-tf <img src="images/material-location.png" width="1328" style="display: block; margin: auto;" /> ] --- # Course overview .font90[ .pull-left[ .center[.bold[Day 1]] | Time | Activity | | :------------ | :------------------------ | | 09:00 - 09:30 | Introduction | | 09:30 - 10:30 | Deep learning ingredients | | 10:30 - 11:00 | *Coffee break* | | 11:00 - 12:30 | Deep learning recipe | | 12:30 - 13:30 | *Lunch break* | | 13:30 - 15:00 | Computer vision & CNNs | | 15:00 - 15:30 | *Coffee break* | | 15:30 - 17:00 | Project | ] ] -- .font90[ .pull-right[ .center[.bold[Day 2]] | Time | Activity | | :------------ | :------------------------ | | 09:00 - 10:30 | Word embeddings | | 10:30 - 11:00 | *Coffee break* | | 11:00 - 12:30 | Collaborative filtering | | 12:30 - 13:30 | *Lunch break* | | 13:30 - 15:00 | RNNs & LSTMs | | 15:00 - 15:30 | *Coffee break* | | 15:30 - 17:00 | Final project & wrap up | ] ] --- # That's a lot of material! .pull-left[ ### You may be overwhelmed <img src="images/drowning.gif" height="400" style="display: block; margin: auto;" /> ] -- .pull-right[ ### So work together <img src="images/dogs-helping.gif" height="400" style="display: block; margin: auto;" /> ] --- class: yourturn # Your Turn! <br> ## .font140[Meet your neighbors:] .font130[ 1. What is their experience with R, machine learning, and/or deep learning? 2. What programming experience other than R do they have? 3. How are they using, or how do they plan to use, R and deep learning in their job? ] --- class: yourturn # Your Turn! <br> ## .font140[Meet your neighbors:] <img src="https://media1.tenor.com/images/82ed88212e7752741e898cdd0fba7824/tenor.gif?itemid=3426841" width="85%" height="85%" style="display: block; margin: auto;" /> --- # Meet your friendly TAs .pull-left[ .center[[Rick Scavetta](https://github.com/Scavetta)] <img src="images/rick_scavetta.jpeg" width="40%" height="40%" style="display: block; margin: auto;" /> .center[[Doug Ashton](https://github.com/dougmet)] <img src="https://avatars3.githubusercontent.com/u/5878305?s=460&v=4" width="40%" height="40%" style="display: block; margin: auto;" /> ] .pull-right[ .center[[Omayma Said](https://www.onceupondata.com/)] <img src="images/omayma_said.jpg" width="40%" height="40%" style="display: block; margin: auto;" /> .center[[Daniel Rodriguez](https://github.com/danielfrg)] <img src="https://avatars3.githubusercontent.com/u/1580714?s=460&v=4" width="40%" height="40%" style="display: block; margin: auto;" /> ] --- # Asking Questions .pull-left[ .center.font140[Deep learning] <img src="images/yellow-sticky.png" width="80%" height="80%" style="display: block; margin: auto;" /> ] .pull-right[ .center.font140[Code, server, logistics, admin] <img src="images/blue-sticky.png" width="80%" height="80%" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # Why deep learning? --- class: clear, center, middle background-image: url(images/01-ai-ml-dl-landscape.002.jpeg) background-size: cover --- # Why deep learning? .font140.pull-left[ <br> * .font120[Automated feature extraction] ] .pull-right[ <br><br> <img src="images/auto-feat-extract.png" width="924" style="display: block; margin: auto;" /> ] .footnote[Image: [Sambit Mahapatra](https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063)] --- # Why deep learning? .font140.pull-left[ <br> * Automated feature extraction * Problem solving flexibility ] .pull-right[ <br> <img src="images/prob-solve-flex.png" width="315" style="display: block; margin: auto;" /> ] --- # Why deep learning? .font140.pull-left[ <br> * Automated feature extraction * Problem solving flexibility * Scales efficiently 🧐 ] .pull-right[ <br><br><br> <img src="images/dl-scale.png" width="367" style="display: block; margin: auto;" /> ] .footnote[Image: [Andrew Ng](https://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf)] --- class: inverse, center, middle # Why Keras? --- # Deep learning frameworks <img src="images/01-ai-ml-dl-landscape.008.jpeg" width="2513" style="display: block; margin: auto;" /> --- # Deep learning frameworks <img src="images/dl-framework-rankings.png" width="933" style="display: block; margin: auto;" /> --- # My preferred DL framework <br><br> <img src="images/01-ai-ml-dl-landscape.010.jpeg" width="2553" style="display: block; margin: auto;" /> --- # On the shoulders of giants .pull-left[ .center[Francois Chollet] <img src="images/francois_challet.jpeg" width="40%" height="40%" style="display: block; margin: auto;" /> .center[J.J. Allaire] <img src="images/jjallaire.jpg" width="40%" height="40%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="images/dlwithR.jpeg" width="75%" height="75%" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # Ready? .center.white[_Let’s start get started!_] --- # Back home <br><br><br><br> [.center[
<i class="fas fa-home fa-10x faa-FALSE animated "></i>
]](https://github.com/rstudio-conf-2020/dl-keras-tf) .center[https://github.com/rstudio-conf-2020/dl-keras-tf]